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ABSTRACT 

    Two hundred and six sweet potato genotypes descended from Fusarium wilt resistant 

Beauregard variety as one of the parents and those without Beauregard as a parent were 

inoculated with the Fusarium wilt pathogen, Fusarium oxysporum f.sp. batatas. The 

objectives of this study were to: (i) compare the efficiencies of different models in describing 

time to symptom expression and time to death among infected sweet potato genotypes and, 

(ii) develop predictive models. The Kaplan-Meier survival function and actuarial life tables 

were used for nonparametric modelling while probability plots using the Generalized gamma, 

Exponential, Weibull, Lognormal and Log-logistic models were used for parametric 

modelling. The three-parameter generalized gamma model was also used to determine the 

performance of the simpler nested two-parameter models. The effect of parental resistance 

level was significant (P = 0.05) for time to death. Genotypes with Beauregard as a parent took 

longer to die or show symptoms. From the nonparametric analysis, genotypes descended 

from Beauregard as a parent took on average 43.14 days to die compared to non-Beauregard 

genotypes that took 33.31 days. Mean time to symptom expression for all models ranged 

from 11.67 to 12.28 days. In conclusion, it is possible to model survival time using either the 

parametric Generalized gamma, Lognormal and Weibull models or the nonparametric model. 
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Introduction  
 

       Sweet potato is the eighth most 

important source of starch globally, and 

the sixth in Africa (FAO, 2020). The 

commodity is used for food and for animal 

feed and supports thousands of households 

involved in its production, processing and 

sale. Varieties have been bred for desirable 

qualities like flesh and skin colour, root 

shape, taste and resistance to pests and 

diseases. Diseases that greatly affect sweet 

potato production include viral, bacterial 

and fungal infections. One of the major 

fungal diseases in East Africa is Fusarium 

wilt, caused by Fusarium oxysporum f.sp. 

batatas (Chalwe et al., 2017).  
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      Fusarium wilt symptoms include 

yellowing of older leaves, brown lesions 

on leaves, wilting, leaf drop and ultimate 

death of the plant. Internal discolouration 

of the vascular tissue is also a diagnostic 

symptom (Moussa et al., 2018). Symptoms 

are more severe under conditions of low 

soil moisture. Additionally, the fungus can 

persist in soil for many years thus 

perpetuating infections for long. The most 

effective and economical means of 

controlling this disease is the use of 

resistant cultivars like Beauregard and 

‘Jewel’. In addition, a combination of 

cultural practices like field sanitation, use 

of certified disease-free cuttings and crop 

rotation may be used for disease control. 

     It is not possible to know whether a 

field is infested with the Fusarium wilt 

pathogen unless symptoms are observed 

on growing plants or the soil tested. Also, 

plant pathogens have great diversity with 

different races and pathotypes adapted to 

different environments (Sseruwu et al., 

2020). As a result, cultivars that were 

previously resistant may progressively 

become susceptible to infection. 

Development of field-testing and early 

disease detection methods using test plants 

will therefore aid in disease control. The 

ability to model the time to appearance of 

disease symptoms and the time to death of 

the plant is important in instituting such 

disease control measures (Giroux et al., 

2016)). In sweet potatoes, the models are 

especially important since the crop is 

widely grown globally and is economically 

important to the livelihoods of many 

resource-poor farmers. Prediction of the 

level of crop damage and mortality at 

various times due to the disease will also 

assist in modelling possible levels of crop 

loss. Predictive and descriptive survival 

analysis models like simple probability 

parametric models, accelerated failure time 

(AFT) models and proportional hazards 

models have been used to explain 

mortality (Bogaerts et al., 2018). This 

paper focuses on the following simple 

probability parametric models Weibull, 

Lognormal, Exponential, Log-logistic and 

the Generalized gamma models.  

     In an attempt to describe analysis of 

mortality data different workers have 

chosen to approach the subject from a 

‘survival analysis’ point of view. Singh 

and Dlamini (2021) define survival 

analysis as “a group of statistical 

procedures for data analysis, for which the 

outcome variable of interest is time until 

an event occurs.” Events of interest may 

include any observable change like death, 

onset of disease, seed germination or 

flowering in plants. Survival analysis was 

therefore developed for application to 

longitudinal data (Bogaerts et al., 2018).  

     Survival analysis commonly uses terms 

like (i) survival time which indicates the 

period from onset of an event to its 

endpoint, (ii) survival rate as the 

proportion of individuals that survive a 

process for a given time, and (iii) time-to-

event which represents the period until an 

event of interest occurs (Rathod et al., 

2020). In defining time we must 

differentiate between ‘calendar time’ and 

‘event time’ in collecting survival data. 

‘Calendar time’ refers to specific dates in a 

particular time period when the study 

commences and terminates (Moore, 2016 ; 

Bogaerts et al., 2018). ‘Calendar time’ is 

important since not every case is entered 

into a study at the same time. The second 

concept of time is the ‘event time’. ‘Event 

time’ is the total time period from when 

the study commences until the event of 

interest occurs. Two subjects may, 

therefore, be observed in two different 

calendar years in the same study but have 

identical event times. 

     Other commonly used terms are 

hazard, life-table,  and censoring. When a 

study is completed before all individuals 

under observation have experienced the 

event of interest, those individuals are 

censored or right-censored. If individuals 

experience the event of interest before the 

study begins and the individuals are 
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included in the study, those are left-

censored. If individuals in a study 

experience the event of interest while the 

study is ongoing but the time the event 

occurs is unknown, those are interval 

censored (Bogaerts et al., 2018; Singh and 

Dlamini, 2021). However, censoring is a 

feature in survival data that is difficult to 

incorporate into common analytical 

methods like regression (Rathod et al., 

2020). Survival analysis, therefore, uses 

maximum likelihood and partial likelihood 

procedures to facilitate handling of such 

data with censored and uncensored cases 

(Moore, 2016; Bogaerts et al., 2018). 

Using survival analysis an investigator is, 

therefore, able to model survival 

distribution for a population of organisms, 

compare distributions from different 

populations and analyze the effect of any 

covariates on the survival times. 

     Survival models have been formulated 

using nonparametric and parametric 

survival and hazard analysis techniques 

(Nesi et al., 2015; Minzat et al., 2018; 

Rathod et al., 2020; Mills et al., 2021). 

Survival and hazard functions have also 

previously been described by Benali et al., 

(2015) and Nsobinenyui et al., (2022) as 

an effort to analyse survival times using 

assumed distributions. According to 

Shrestha et al., (2019) other analytical 

methods do not make any assumptions that 

the survival function has a particular 

distribution. These procedures are called 

semiparametric methods, and they include 

Cox’s proportional hazards method (Cox, 

1972; Harris et al., 2015).  

    Survival analysis, has so far, been rarely 

used to examine time-to-event data 

generated by plant pathologists (Nesi et 

al., 2015) and in agriculture generally 

(Singh and Dlamini, 2021). This scenario 

is more pronounced in food crops as 

evidenced by the dearth of literature 

involving survival analysis of events in 

crop plants. Non-parametric analysis for 

this study was done using the Kaplan-

Meier (KM) estimate (Kaplan and Meier, 

1958) while parametric analyses used 

single failure-time probability distribution 

models (Meeker and Escobar, 1998). The 

objectives of this study were to: (i) 

compare the efficiencies of different 

models in describing time to symptom 

expression and time to death among 

infected sweet potato genotypes and, (ii) 

develop predictive models. 

 

1. MATERIALS AND METHODS 

1.1.Plant Material : 

     The project was conducted under 

greenhouse conditions at the Horticultural 

Hill Farm teaching facility, Louisiana 

State University. Crosses from the parental 

varieties Beauregard, Wagabolige, 

Tanzania, Kyukei No. 64, Jonathan-W218, 

Jonathan-W154 and CN1732-4 were used 

in this study. Beauregard was selected as a 

parent because it is resistant to Fusarium 

wilt (Clark et al., 1998). The other parents 

were selected because they were 

susceptible to Fusarium wilt and were 

previously tested for adaptability to East 

African conditions (Mcharo et al., 2001). 

Crosses from these parents provided an 

opportunity to investigate how resistance 

is inherited. First-generation seeds from 

two different categories of crosses 

(Beauregard and non-Beauregard) were 

germinated and the seedlings left to grow 

for about two months. Beauregard crosses 

were: Beauregard x Wagabolige and 

Beauregard x Tanzania. Non-Beauregard 

crosses consisted of offspring from the 

crosses Kyukei No. 64 x Jonathan-W218, 

Wagabolige x Jonathan-W154 and 

CN1732-4 x Jonathan-W218. Beauregard 

crosses, therefore, had Beauregard as one 

of the parents while non-Beauregard 

crosses did not have Beauregard as one of 

the parents. Each seedling was a unique 

genotype, but all seedlings from a 

particular cross belonged to one family.  
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1.2.Culturing the Pathogen: 

    Isolate WJM-7 of F. oxysporum f.sp 

batatas from infected sweet potato plants 

was cultured in Czapek’s broth with 

constant agitation for 5 days. The 

inoculum was prepared by filtering the 

culture through four layers of cheesecloth 

and adjusting with the aid of a 

hemacytometer to 10
6
 spores per ml. 

 

1.3.Inoculation of the Plants: 

    Two hundred and ten distinct progeny 

from the specific crosses of sweet potatoes 

were inoculated with the fungus by 

dipping the wounded parts of the plants 

into the culture as described by Clark et 

al., (1998). Vine cuttings 15 cm long were 

cut from the seedlings and all the leaves 

except the top two to three were removed 

by breaking the petiole away from the 

stem. Removing the older leaves in this 

manner provided wounds for entry of the 

pathogen and reduced the likelihood that 

leaf senescence would occur during 

symptom development.  

 

 

1.4.Assessment of the Plants: 

    Development of the inoculated cuttings 

was observed for 47 days when no more 

symptoms developed or death occurred for 

at least two weeks. Data on days to 

symptom appearance and days to plant 

death were recorded throughout the 

observation period. A seedling was 

considered infected when at least one 

necrotic fungal lesion was observed on a 

leaf or stem (Figure 1). Severity of the 

symptoms was not important for this study 

hence no severity scale was used. Death 

was recorded when the seedling was fully 

necrotic, wilted and toppled over (Figure 

2).  

1.5.Data Collected: 

i. Days to symptom appearance 

(right-censored variable) 

ii. Days to death (right-censored 

variable) 

iii. Parentage or parental cross from 

which the genotype was derived. This is 

the categorical covariate included in the 

analysis which was made up of either the 

Beauregard and non-Beauregard categories 

of crosses.  

 

 
Figure 1: Plant showing symptoms setting in 9 days after inoculation. 
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Figure 2: Dead plant from a non-Beauregard cross 9 days after inoculation. 

 

1.6. Data Analysis: 

     The data obtained from this study were 

right-censored data. There were plants that 

either did not show symptoms at the end of 

the study or were not dead at the end of the 

study. These plants survived the events of 

interest and hence were right-censored. 

Consequently, survival analysis models 

were used to analyze the data. Survival 

time was the dependent variable while the 

category of plants was the independent 

variable. The parent ‘Beauregard’ is highly 

resistant to Fusarium wilt while the other 

genotypes are susceptible. Therefore, the 

two categories of the covariate were 

expected to have different survival  

distributions from each other because of 

the parents used to derive the individuals. 

     Both nonparametric and parametric 

modelling was done. The methods used for 

nonparametric estimation of survival and 

hazard functions were the Kaplan-Meier 

(KM) method and actuarial life tables 

(Cox, 1972). The Kaplan-Meier method, 

also called the product-limit estimator, was 

developed by Kaplan and Meier (Kaplan 

and Meier, 1958) as a nonparametric 

maximum likelihood estimator and it 

estimates the survival function      . 

Parametric modelling used five models, 

namely the Exponential, Weibull, 

Lognormal, Log-logistic and Generalized 

gamma models. However, because the 

Generalized gamma model has more 

parameters than the other four, its hazard 

function is complicated thus making it 

difficult to interpret the shape of the 

hazard function. Also development of the 

model is much more difficult for the same 

reason. Therefore, only minimal results for 
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the Generalized gamma are presented for 

purposes of comparing it with other 

models.  

    The survival and hazard functions used 

in this study were of the following general 

form: 

The survival function,    , for time t was 

defined as : 

 ( ) 1 ( ) , 0S t F t P T t t      (1) 

Where: 

        ( )F t  was the probability that survival 

time will be less than or equal to time t 

       T was a continuous random variable 

measured as any time beyond the 

defined survival time t 

 

      The survival function ( )S t  was also 

described by the closely related cumulative 

distribution function ( )F t  thus, 

( ) ( ), 0F t P T t t    (2) 

.   The hazard function, ( ),h t  was the 

instantaneous rate of change of the 

probability of death at time t, given that 

the individual survived to time t. 

( | )
( ) lim , 0

t

P t T t t T t
h t t

t 

   
 



 

Where: 

   was the change of time or 

increment in time. 

      The hazard function was simplified to: 

             
    

      
       (3) 

Where: 

              was the probability density 

function for T and also the derivative 

of      

 

2.7.1. Nonparametric Estimation of 

Survival: 

The KM estimator that was used is defined 

as: 

1

ˆ( ) ,
i

i i

j i

n d
S t

n

 
   

 
 (4) 

Where: 

         ni is the number of individuals 

surviving up to the beginning of time ti and 

di is the number of individuals who die at 

time ti. However, the Kaplan-Meier 

estimator has lower estimating efficiency 

compared to parametric methods because 

it will give a larger variance for ˆ( )S t  than 

the variance obtained by parametric 

analysis for a particular data set  

(Zee and Xie, 2018). 

       Three criteria were used to compare 

survival functions between the two 

categories of crosses. The criteria, which 

all follow a chi-square distribution, are the 

likelihood ratio test (Özen et al., 2021). ), 

the log-rank test and the Wilcoxon test.  

The likelihood ratio test assumes a 

constant hazard function in each group 

thus suggesting an Exponential 

distribution for time to event. This 

assumption is however not practical for 

biological organisms. The log-rank test is 

suitable for the proportional hazards model 

while the Wilcoxon test is superior to the 

log-rank test where time to event has a 

Lognormal distribution. The log-rank test 

is more sensitive in detecting differences 

between strata at later times while the 

Wilcoxon is better at early times (Bogaerts 

et al., 2018). 

 

2.7.2. Parametric Estimation of 

Survival:  

      Parametric modelling of survival data 

in this study was done using simple 

probability parametric models because 

there were no measureable explanatory 

variables to make use of regression 

functions. These models are extensively 

discussed by Meeker and Escobar (1998). 

This study did not assume proportional 

hazards and thus excluded proportional 

hazards models. Since the categories that 

made up the covariate were nominal, AFT 

regression methods were not used either. 

The study, therefore, used single failure-

time distribution parametric models for 
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analysis. These distributions have the 

following advantages: (i) They can be 

described concisely with just a few 

parameters instead of reporting an entire 

curve, (ii) They are amenable to 

extrapolating to lesser or greater times, and 

(iii) They provide smooth estimates of 

survival distributions. Chiang et al., (2024) 

further discussed the use of survival 

analysis methods for interval-censored 

data with a quantitative covariate. Five 

parametric models, namely the 

Generalized gamma, the Exponential, 

Weibull, Lognormal and Log-logistic were 

tested to determine the model(s) that best 

describe the distribution of time to 

symptoms or death (Meeker and Escobar, 

1998). The Generalized gamma model, 

which has three parameters, was the 

unrestricted (larger) model while the other 

four were restricted (smaller) models. The 

Exponential, Weibull and Lognormal 

models are derivatives of the Generalized 

gamma model but the Log-logistic model 

is not derived from the Generalized 

gamma model. The model comparisons 

were done using the following restrictions 

on the scale parameter and the shape 

parameter for the Generalized gamma 

model: Scale = 1 for Weibull; scale = 1, 

shape = 1 for Exponential; shape = 0 for 

Lognormal. The performances of different 

survival models were compared using 

twice the difference of log-likelihood for 

any two models being compared. Results 

for the survival, cumulative and hazard 

functions were obtained for all the five 

tested models. The statistical software R 

version 4.1.0 was used for data analysis. 

The mathematical foundations for these 

models are described in Meeker and 

Escobar (1998) and Bogaerts et al., (2018). 

Therefore, this paper will restrict itself to 

the general descriptions of the models. 

       Generalized Gamma model: 

                

                
 

 
 

 

           

Where: 

         0  is a scale parameter, 0   

and 0   are shape parameters, and 

        is the gamma function. 

 

Exponential model.           

           
 

 
             

 

Where: 

          is the scale parameter  and the 

constant hazard. This model is a one-

parameter distribution and the scale 

parameter η is constrained to  . The 

log of T  has an extreme-value distribution 

and consequently T  has an Exponential 

distribution. The Exponential distribution 

of T has a constant hazard function. 

 

Weibull Model.              

             
 

 
 

 

           

          
Where: 

             is the shape parameter and 

      is the scale parameter. 

Consequently, the Exponential survival 

function is a derivative of the Weibull with 

the restriction  . In this model the 

value of   varies (Escobar, 1998 and 

Moore, 2016 Meeker). The hazard 

function decreases with time when   

but it increases at a decreasing rate when 

0.5 . The hazard increases at an 

increasing rate when 0     and the 

hazard function is an increasing straight 

line with origin 0 when  .  

 

Log-normal model.                 

          
        

 
        

Where: 

52 



Mcharo et al.  

 

          exp (μ) is a scale parameter at the 

median (= t0.5) and 0   is a shape 

parameter. nor  is the cumulative 

distribution function for a (0,1)NOR . 

When t = 0 the hazard is 0, rising to a peak 

with time and decreasing to 0 as t 

approaches infinity.  

Log-logistic model: 

                
            

                          

            
        

 
        

Where: 

         exp( )  is a scale parameter and 

0   is a shape parameter. logis is the 

cumulative distribution function for a 

(0,1)LOGIS . Bogaerts et al., (2018) 

further stated that this model assumes that 

the error term has a logistic distribution 

with mean = 0. It then follows that log T 

has a logistic distribution and T has a Log-

logistic distribution with the hazard 

function described above. As opposed to 

the Exponential, Weibull and Lognormal 

models, the Log-logistic model, is not 

nested within the Generalized gamma 

model and so a likelihood ratio test to 

compare the performance of the Log-

logistic against the Generalized gamma 

could not be computed. The efficacy of 

Lognormal and Log-logistic models in 

modelling time to germination has been 

documented by Romano and Stevanato 

(2020). 

 

3. RESULTS AND DISCUSSION 

3.1. Censored and Un-censored Data:      

Table (1) is the summary of censored and 

un-censored data from the experiment. 

Censored individuals were plants that did 

not show any symptoms or die at the end 

of the study. For symptom expression, 6% 

of Beauregard progeny were censored 

while 3% of non-Beauregard progeny were 

censored at 32 days. These did not show 

symptoms until the close of the study on 

the 47
th

 day. Results in Table (2) suggest 

that symptoms set in faster in the crosses 

not involving Beauregard as a parent. The 

earliest symptoms were necrotic spots on 

leaves, and they were observed two days 

after inoculation while the earliest death 

was recorded eight days after inoculation. 

Symptoms set in the Beauregard crosses 

on average 2 days after the onset of 

symptoms in the non-Beauregard crosses. 

These values were underestimates because 

the Kaplan-Meier nonparametric estima-

tion method was restricted to the largest 

time to symptom expression while in 

reality there were censored individuals. 

Nesi et al., (2015) also reported having 

encountered limitations of the Kaplan-

Meier test when analysing post-harvest 

diseases of peaches. 

 

Table 1: Summary of the number of censored and uncensored plants for symptom expression 

Cross Total plants 

Plants with 

symptoms 

Number 

censored 

Percent 

censored 

Beauregard   56   53 3 5.36 

Non-Beauregard 150 146 4 2.67 

Total 206 199 7 3.40 

 

 

3.2. Nonparametric tests:  

      Tests of equality of time to symptom 

expression and plant death were conducted 

involving all crosses. The probabilities of a 

greater Chi-square for all the three (Log-

Rank, Wilcoxon, and Likelihood Ratio) 

tests of time to symptom expression were 

greater than the critical value of α = 0.05 

as presented in Table (3). We, therefore, 

did not reject the null hypothesis that cross 
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type had no effect on time to symptom 

expression. 

 

 

  

Table 2: Mean and median time to symptom expression 

Cross Mean 

(days) 

Standard error 

for mean 

Median 

(days) 

95% Confidence 

intervals for median 

    Lower Upper 

Beauregard 12.875 1.408 7.500 5.000 15.000 

Non-Beauregard 10.787 0.773 6.000 5.000 7.000 

Both combined 11.354 0.682 6.000 5.000 7.000 

 

 

Table 3: Test of equality of time to symptom expression over crosses 

Test Chi-Square Df Pr > Chi-Square 

Log-Rank 1.168 1 0.280 

Wilcoxon 0.807 1 0.369 

-2Log(LR) 1.685 1 0.194 

  

  

    This result suggests that the two 

categories of crosses had the same survival 

function, and consequently, modelling of 

distribution of time to symptom expression 

ignored the cross covariate. Yellareddygari 

et al., (2017) also reported results of the 

Log-Rank and Wilcoxon tests to model 

survival time of the potato mop virus. 

Actuarial life table results in Table (4) 

indicate that the hazard is stable for the 

first 10 days as indicated by the median 

residual lifetime. At commencement of the 

study the mean residual lifetime for the 

whole population of plants is 7.5 days. It 

then increased to a peak of 16.41 days for 

the plants without symptoms at 10 days 

after inoculation. At 25 days after 

inoculation, the plants still without 

symptoms had a median residual lifetime 

of 3.08 days. These results are further 

discuss in conjunction with those in Figure 

(1) 

     Figure (3)  is a non-parametric 

mortality and hazard plot for time to 

symptom expression, with point wise 

confidence bands for the two categories of 

sweet potato crosses. Hazard plots have 

been used effectively in the past to detect 

symptomatic and asymptomatic plants by 

Benali et al., (2015). 

 Figure (1) indicates high mortality rates 

within the first 7 days. The rate thereafter 

declined gradually until the 13
th

 day before 

it flattened up to the 22
nd

 day for 

Beauregard crosses. Thereafter the 

proportion with disease symptoms 

increased up to the 27
th

 day for Beauregard 

crosses before flattening. For non-

Beauregard crosses, the trend flattened 

from the 13
th

 to the 26
th

 day before 

suddenly increasing and thereafter 

flattening on the 27
th

 day. The trend of the 

hazard plot (Figure 3) corresponds well 

with that of the mortality plot. In the 

hazard plot, there is a general increase in 

the cumulative hazard up to the 9
th

 day for 

Beauregard crosses before flattening up to 

the 22
nd

 day. A gentle increase was 

observed up to the 26
th

 day and thereafter a 

rapid increase in the cumulative hazard. 

The cumulative hazard for the non-

Beauregard crosses flattened from the 13
th

 

up to the 26
th

 day before rapidly 

increasing. This was also considered to be 

the day when the hazard function peaked 

thus indicating a higher propensity for  
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Table 4: Life table for symptom expression showing hazard rates for 5 day time intervals 
Days interval Plants 

with 

symptoms 

Number 

censored 

Median 

Residual 

Lifetime 

PDF
1
 Evaluated at the Midpoint of the 

Interval 

Lower Upper     PDF 

Standard 

Error 

Hazard Hazard 

Standard 

error 

0 5 74 0 7.500 0.072 0.007 0.088 0.010 

5 10 58 0 7.500 0.056 0.006 0.113 0.014 

10 15 16 0 16.410 0.016 0.004 0.048 0.012 

15 20 1 0 12.436 0.001 0.001 0.003 0.003 

20 25 9 0 7.500 0.009 0.003 0.034 0.011 

25 30 39 0 3.077 0.038 0.005 0.274 0.032 

30 33 2 7 . 0.005 0.003 0.148 0.102 

 
1
Probability density function 

 

 
Figure 3. Nonparametric mortality and hazard trends of days to Fusarium wilt symptom 

expression (B – Beauregard, NB – Non-Beauregard). 
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these plants to die later as time progressed. 

Trends for both categories of crosses 

flattened on the 27
th

 day. The initial rapid 

increases were due to highly susceptible 

plants while the flattening and gentle 

increases reflected the fact that the 

remaining plants had higher levels of 

resistance. The second rapid increase in 

mortality correlates well with the pathogen 

overcoming the first line of resistance of 

the remaining symptom-less plants. This 

occurs when the pathogen in the plant 

system multiplies to a threshold level 

where symptom expression due to tissue 

breakdown is inevitable. The final 

flattening of the trend indicates the fact 

that most of the remaining plants had very 

high levels of resistance and were unlikely 

to succumb to the fungus. The results, 

therefore, suggest that there were: three 

classes of plants which were susceptible, 

intermediate, and resistant. The susceptible 

plants account for the first increase in 

mortality, the intermediate the second 

increase after the first flattening, and the 

resistant the long-term survivors. Because 

the greenhouse environment was generally 

homogeneous, resistance was most likely 

genetic. However, in another study, Lanza 

et al. (2019) suggested that the expression 

of citrus canker lesions and premature fruit 

drop were influenced by the season of the 

year thus underscoring the importance of 

the environment and not just genetics in 

modelling disease management. 

      By the end of the study, only about 

29% of Beauregard plants and 41% of 

non-Beauregard plants had died (Table 5). 

Therefore, no median time to death could 

be computed (Table 6). The earliest death 

was recorded 8 days after inoculation in a 

cross involving non-Beauregard parents. 

Also, an earlier mean time to death of 

33.31 days was recorded for non-

Beauregard crosses while crosses 

involving Beauregard as one of the parents 

took on average 10 days longer to die 

(Table 11).  

 

Table 5: Summary of the number of censored and uncensored plants for plant death 

Cross Total Plants Dead 

Percent 

Dead 

Plants 

Censored 

Percent 

Censored 

Beauregard 56 16 28.6 40 71.43 

Non-Beauregard 150 61 40.7 89 59.33 

Total 206 77 37.4 129 62.6 

 

 

Table 6: Mean and median time to plant death 

Cross Mean (days) Standard error of mean Median (days) 

Beauregard 43.14 1.18 - 

Non-Beauregard 33.31 1.16 - 

  

     There was evidence of a significant 

effect of the category of cross as a 

covariate on time to plant death as 

indicated by the significant probability of 

the Chi-square tests presented in Table 7. 

Consequently, modelling of survival and 

hazard functions considered crosses 

involving Beauregard and non-Beauregard 

crosses as coming from different 

independent populations. 
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Table 7: Test of equality of time to plant death over crosses 

Test Chi-square df Pr > Chi-square 

Log-Rank 4.230 1 0.0397 

Wilcoxon 6.456 1 0.0111 

-2Log(LR) 4.398 1 0.0360 

 

  

    There was a higher rate of plants dying 

in the non-Beauregard category than in the 

other category of plants as illustrated in 

Figure 4. The rate of dying is lower in 

Beauregard crosses than in non-

Beauregard crosses, and this may be 

attributed to the higher level of resistance 

that is found in the Beauregard parent and 

which is imparted onto the progeny. The 

fraction of dead individuals from the non-

Beauregard crosses increased rapidly from 

about 0.005 on the eighth day to almost 

0.26 on the fifteenth day as modelled by 

the KM estimate in Figure 4. These early 

deaths were primarily due to the low 

resistance levels in the plants. Conversely, 

the Beauregard group does not seem to 

exhibit the distinctive feature of early or 

statistical infant mortality. This was 

possibly because the Beauregard crosses 

were derived from three different parents  

with the more resistant Beauregard being 

the common parent while the non-

Beauregard crosses were derived from five 

genetically heterogeneous parents with 

lower levels of resistance. In another study 

by Pereira et al., (2019), the effect of 

genetics was also observed on the survival 

of Passiflora spp when they analysed the 

incidence of Fusarium oxysporum f. sp. 

Passiflorae. At the end of our study on the 

47
th

 day, the rate of survival in the 

Beauregard plants was about 0.74 while in 

the non-Beauregard plants it was about 

0.60 (Figure 4). We conclude that 

Beauregard plants are resistant during the 

early days of the disease but become 

weaker with time while plants in the non-

Beauregard group succumb much earlier 

but the ones still surviving are relatively 

more resistant.  

 

 
Figure 4. Nonparametric mortality curve for plant death with 95% point wise confidence 

bands (B – Beauregard, NB – Non-Beauregard). 
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3.3. Parametric Tests: 
      The Wald Chi-square test statistic (P = 

0.05) results obtained from modelling 

using the five parametric models found no 

significant effect of the category of cross 

on time to symptom expression. It was 

concluded that the Beauregard and non-

Beauregard genotypes do not differ 

significantly in the time it takes for them 

to express symptoms. The significant 

Wald Chi-square test statistics from 

modelling for time to plant death 

suggested that there was a significant 

effect of the category of a cross on time to 

plant death. The Generalized gamma 

model elucidated the greatest differences 

between the two categories of crosses (P < 

0.0001) followed by the Lognormal (P = 

0.003). It was, therefore, concluded that 

the Beauregard and non-Beauregard 

crosses differed significantly in the time it 

took for them to die. This was not 

surprising because Beauregard is likely to 

have imparted some of its resistance to its 

progeny. These results confirm the non-

parametric results that the two types of 

crosses belong to different distributions.      

The likelihood ratio tests (Giroux et al., 

2016) compared parametric fits of the 

simpler, or restricted, models with the 

more complicated, or unrestricted 

Generalized gamma model (Nesi et al., 

2015). The hypothesis tested was equality 

of restricted and unrestricted models. 

Fitting a Generalized gamma model for the 

Beauregard crosses for time to plant death 

was not possible because the model could 

not converge. The Exponential model was 

also tested against the Weibull model. The 

Chi-Square tests for plant death were all 

significant except when the Exponential 

model was tested against the Weibull 

model for plant death. These results 

suggest that none of the restrictions 

imposed on the three-parameter 

Generalized gamma model to derive the 

two-parameter models resulted in a better 

fit. We conclude that the Generalized 

gamma model has a significantly better fit 

than its subsets. 

     The likelihood ratio tests in Table (8) 

assume that the unrestricted model fits the 

data well when compared against the 

Generalized gamma. The Lognormal 

model was the best fitting for both 

symptom expression and plant death. From 

the results, one may conclude that there 

was no significant difference between the 

Exponential and the Weibull models for 

time to plant death. However, when the 

Weibull model was tested against the 

Generalized gamma model we rejected the 

Weibull model. The Weibull model does 

not fit as well as the Generalized gamma. 

This result suggests that the restriction 

imposed on the Generalized gamma model 

to derive the Weibull model was not 

useful. Consequently, we would also reject 

the Exponential model regardless of the 

Exponential versus Weibull test results. 

On the other hand, Zaluski et al. (2018) 

found the Exponential model to provide a 

reliable fit for willow (Salix L.) survival 

times and lifespan. The Akaike 

information criterion (AIC) model fit 

statistics (Table 9) were interpreted as 

discussed by (Chang et al., 2018). The 

results indicate that the Generalized 

gamma model had the best fit followed by 

the Lognormal for symptom expression. 

The Weibull model provided the best fit 

for time to death among Beauregard 

crosses while among non-Beauregard 

crosses the best restricted model was the 

Lognormal. Overall, the Generalized 

gamma fitted the data the best. The time to 

death results follow the trends of the data 

observed for time to symptom expression. 

All the tested models suggest that 

Beauregard crosses take longer to die. 

Parameter estimates for model formulation 

are presented in Table (10). The estimates 

generated by all the models are very 
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similar with mean time to symptom 

expression ranging from 11.67 days for the 

Lognormal model to 12.28 days for the 

Log-logistic model (Table 10).

. 

Table 8. Likelihood ratio tests for model fit 

Event Test df χ
2 

Pr > χ
2
 

Symptom expression Lognormal vs. Generalized Gamma 1 827.00 <0.005 

 Weibull vs. Generalized Gamma 1 867.20 <0.005 

 Exponential vs. Weibull 1 8.80 <0.005 

 Exponential vs. Generalized Gamma 2 876.00 <0.005 

Plant death (non-

‘Beauregardard’) Lognormal vs. Generalized Gamma 1 382.60 <0.005 

 Weibull vs. Generalized Gamma 1 397.00 <0.005 

 Exponential vs. Weibull 1 0.60   0.439 

 Exponential vs. Generalized Gamma 2 397.60 <0.005 

  

      The quantile estimates presented in 

Table (8) indicate the number of days it 

would take for a certain probability of the 

plant population to express symptoms. 

This is a useful value in predicting crop 

damage levels at given time periods. 

Distributions with a larger log-likelihood 

or a low AIC value have a better fit for the 

data. Consequently, the best restricted 

model would be the Lognormal.  The 

unrestricted Generalized gamma model 

used has one scale parameter and two 

shape parameters. These parameters give it 

greater flexibility to fit better models for 

these data as compared to the other two-

parameter models. As previously noted, 

several models are available to analyse 

survival data, and these models can allow 

multiple covariates and multiple 

parameters for increased robustness 

(Onofri et al., 2019 and Gianinetti, 2020). 

Madden et al. (2018) compared multiple 

Generalized linear models to fit grape 

downy mildew data. They  found that the 

Generalized gamma distribution could be 

used with Generalized linear modelling 

methods. 

 

 

Table 9. Akaike information criterion (AIC) model performance statistics 

Event Distribution AIC 

Symptom expression Exponential 1380.80 

 Log-logistic 1345.80 

 Lognormal 1331.80 

 Weibull 1372.00 

 Generalized Gamma   505.80 

Plant death (Beauregard) Exponential 194.56 

 Log-logistic 182.76 

 Lognormal 182.60 

 Weibull 182.50 

Plant death (non-Beauregard) Exponential 667.80 

 Log-logistic 660.60 

 Lognormal 652.80 

 Weibull 667.20 

 Generalized Gamma 271.20 
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3.4. Utility of the models: 

 

      There is evidence that the Kaplan-

Meier nonparametric method and the 

Lognormal parametric model are adequate 

to describe survival functions for symptom 

development in sweet potato plants 

inoculated with the Fusarium wilt 

pathogen (Benali et al., 2015). 

   The significant difference in mortality 

curves between Beauregard and non-

Beauregard crosses suggests that 

Beauregard as a parent imparted a 

significant amount of resistance to its 

progeny. Survival functions for plant death 

were well described by both nonparametric 

and parametric methods for Beauregard 

crosses.The lack of significant covariate 

effects in time to symptom expression was 

not unexpected because symptoms are 

mainly indicators of the presence of a 

disease. In contrast, the severity of 

symptoms reflects the inherent capacity of 

the plant to resist disease. Using a Kaplan-

Meier approach, the severity of symptom 

expression was previously reported to 

differ among citrus varieties as the disease 

progressed (Frare et al., 2019). 

Nonetheless, disease severity analysis was 

not an objective of this study. Although 

the survival functions between the 

categories of crosses were not significantly 

different for symptom expression, the 

hazard function (Rathod et al., 2020), 

seems to have been a result of more factors 

than just the virulence of the pathogen. 

Such factors may have included the 

genetic make-up of the cross. It is  

 

 

 

Table 10. Parameter estimates and model fit criteria for the best fitting models. 

     

95% confidence 

intervals 

Event Distribution Parameter 

Maximum 

likelihood 

estimate 

Standard 

error Lower Upper 

Symptom Lognormal µ 2.080 0.061 1.962 2.199 

Expression  Σ 0.868 0.044 0.786 0.959 

       

Plant death Weibull* µ 4.265 0.142 3.987 4.543 

(Beauregard)  σ
1 

0.377 0.091 0.236 0.604 

  η
2
       71.158   10.085 53.900 93.942 

  β 2.652 0.637 1.656 4.246 

 Lognormal µ 4.243 0.163 3.923 4.563 

  σ 0.679 0.139 0.455 1.013 

       

Plant death Weibull µ 4.391 0.144 4.110 4.673 

(non-Beauregard)  σ 0.915 0.108 0.727 1.152 

  η        80.757     11.587 60.960 106.983 

  β 1.093 0.129 0.868 1.376 

 Lognormal µ 4.049 0.143 3.769 4.328 

  σ 1.251 0.132 1.017 1.539 

 

Generalized 

Gamma µ
3
 2.417 0.149 2.124 2.710 

  σ
4
 0.519 0.135 0.254 0.784 

  κ        -5.966 1.774 -9.443 -2.490 

*  Weibull η {= exp(µ)}, 
   
Weibull β (= 1/σ),   Gamma η {= exp(µ)} and 

 
 Gamma β (= 1/σ). 
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worth noting that the hazard function is 

also called the instantaneous probability of 

a plant to express symptoms at time t 

given that it had not expressed the 

symptoms up to time t. Sweet potato is 

genetically a hexaploid, meaning that it 

has six sets of chromosomes as opposed to 

the two sets that most food crops have. 

This multiple chromosomal setup 

complicates the genetics of host-plant 

resistance of the sweet potato to diseases 

to the extent that it is very difficult to 

predict the behaviour of a genotype 

derived from cross-pollination. 

Consequently, it is possible to have 

progeny from the same parents behaving 

very differently. Disease resistance is 

primarily a product of the combined action 

of the genetic make-up of the plant and the 

environment in which the plant is growing. 

Since each plant is a unique genotype and 

the experiment was conducted in a 

homogeneous greenhouse environment, 

the genotype by environment interaction 

was minimal, and hence it is postulated 

that differences in time to death were 

highly influenced by the genotype of the 

plant. Therefore, disease modelling 

approaches should take into account both 

the environment and the genotype (Chen et 

al., 2019). However, Onofri et al. (2022) 

suggest that interactions between the biotic 

and abiotic environments can make such 

modelling complicated. 

 

 

3.5. Developing predictive models: 

     The quintile estimates using Lognormal 

and Weibull models as presented in Table 

(11) indicate the number of days it would 

take for a certain probability of the plant 

population to express symptoms or to die. 

According to the Lognormal prediction 

model, 25% of the plants will express 

symptoms by the fourth day and 75% by 

the 15
th

 day. By this time most of the 

susceptible plants are predicted to have 

expressed symptoms and an additional 45 

days required for 99% of the plants to 

show symptoms. The standard errors are 

low thus suggesting an accurate model. 

This is a useful value in predicting crop 

damage levels at given periods. Our results 

in Table (11) suggest that suitability of a 

model to predict plant death depends on 

the genotype. Also, accuracy of prediction 

is seemingly restricted to 50% death 

because beyond that the standard errors for 

both Weibull and Lognormal models 

become large. Other models like the 

Logistic and Gompertz have also been 

used for plant disease prediction (Kebede 

and Golla, 2020; Singh and Deepankar, 

2020) but their suitability vary with 

diseases. Singh et al., (2019) reported the 

efficacy of Exponential and Gompertz 

models to fit epidemic data for Ber 

powdery mildew. These reports suggested 

that the accelerated failure time (AFT) 

models, were adequate in delineating the 

effects of covariates on survival times. 

Benali et al., (2015), on the other hand, 

used the PH model to adequately model 

incubation period of Ascochyta blight in 

pea correctly simulate fruit setting times. 

Survival analysis of wheat infected with 

wheat blast has also been conducted using 

parametric models (Mills et al., 2021). 

These workers used Exponential and 

Weibull models to fit survival and hazard 

functions on life data of adult leafhoppers 

that had been exposed to maize 

mycoplasma under greenhouse conditions. 

In that controlled environment, the 

Weibull distribution gave them a better fit. 

 

4. CONCLUSION  

        This study has shown that it is 

possible to develop models that 

approximate the time it takes for 

symptoms and death to be observed on 

inoculated plants. The resistance genes in 

Beauregard-related plants conferred to 
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these plants better survival chances. The 

utility of non-parametric Kaplan-Meier 

method was limited because it ignored 

censored data. The three-parameter 

Generalized gamma model provided the 

best fit for the data for symptom 

expression among all the crosses and time 

to plant death among the non-Beauregard 

crosses. However, the gamma model needs 

sufficient data to converge and provide a 

well-ftting model. The two-parameter 

Lognormal model was the best restricted 

predictor for symptom expression and 

plant death among non-Beauregard plants. 

The Weibull model was the best restricted 

predictor among Beauregard-related 

plants. Therefore, when data are 

inadequate, the Weibull model is the best 

predictive model.  
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Table 11. Parametric maximum likelihood quintile estimates for the best restricted models  

  
 

  

Confidence intervals 

(95%) 

Event Distribution p value
a 

Quintile (days) 

Standard 

error Lower Upper 

Symptom 

expression  
Lognormal 0.25 4.46 0.30 3.91 5.09 

 0.50 8.01 0.49 7.11 9.02 

 0.75 14.38 0.98 12.59 16.43 

 0.99 60.33 7.22 47.72 76.27 

Plant death 

(Beauregard)  
Weibull 0.25 44.48 4.21 36.96 53.54 

 0.50 61.97 7.38 49.08 78.25 

 0.75 80.49 13.28 58.25 111.21 

 0.99 126.57 33.12 75.78 211.38 

Plant death      

(non-Beauregard)  
Lognormal 0.25 24.66 2.89 19.60 31.02 

 0.50 57.32 8.18 43.34 75.82 

 0.75 133.26 27.59 88.81 199.97 

 0.99 1051.82 427.53 474.20 2333.07 
ap value is the proportion of plants expressing the event of interest 
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